

2012 Marking Scheme

Grade	Mark Required		° condidatos achievina anada
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
A	84+	67%	27.9%
В	71+	57%	25.8%
С	58+	46%	24.3%
D	51+	41%	9.9%
No award	<51	< 41%	12.1%

Section:	Multiple Choi	ice	Extended	Answer	Investiga	tion
Average Mark:	25.8	/40	30.9	/60	15.6	/25

20)12 /	٩dv	Higher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	A	87	 ☑A Alpha radiation is a helium nucleus (not electromagnetic radiation spectrum) ☑B Gamma radiation is part of the EM spectrum (high frequency & low wavelength) ☑C Ultra-violet radiation is part of the electromagnetic radiation spectrum ☑D X-Rays are part of the electromagnetic radiation spectrum
2	D	46	If X ³⁺ has 55 electrons, atoms of X would contain 58 electrons and have 58 protons ∴Element with atomic number 58 is Cerium ∴Cerium is a Lanthanide element and an f-block element
3	D	76	Co atoms have an electron configuration of 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ² ∴ Co ²⁺ ions have an electron configuration of 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ ⊠A 3d ⁷ contains 3 unpaired electrons and 2 pairs of electrons ⊠B Co ²⁺ ions have 6 electrons in s-orbitals (NB 4s ² electrons have been removed) ⊠C Co ²⁺ ions have 15 electrons in 3 rd shell (3s ² 3p ⁶ 3d ⁷) ⊠D 3d orbital is the highest energy level in Co ²⁺ (NB 4s ² has been removed)
4	A	37	 ☑A More radiation travels through the solution is ion concentration decreases ☑B More radiation travels through the solution is ion concentration decreases ☑C Wavelength of transmitted radiation remains the same if ion is the same ☑D Wavelength of transmitted radiation remains the same if ion is the same
5	В	69	 ☑A neon discharge lamps do not absorb radiation ☑B emission of red end radiation would give a red colour ☑C emission of blue end radiation would give a blue colour ☑D neon discharge lamps do not absorb radiation
6	В	57	$H_{2}O \qquad SF_{6} \qquad CH_{4} \qquad C_{2}H_{3}Br$ $H \qquad H \qquad F \qquad H \qquad $
7	D	46	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
8	С	80	 ☑A equilibrium will shift to maintain the value of the equilibrium constant ☑B equilibrium will shift to maintain the value of the equilibrium constant ☑C adding a product sends equilibrium to left ∴ increasing the concentration of PCl₅ ☑D removing a product sends equilibrium to right ∴ decreasing the concentration of PCl₅
9	С	22	$K_{s} = [Ag^{+}(aq)] \times [CI^{-}(aq)] \text{ but } [Ag^{+}(aq)] = [CI^{-}(aq)]$ $\therefore K_{s} = [Ag^{+}(aq)]^{2} = 1.80 \times 10^{-10}$ $\therefore [Ag^{+}(aq)] = 1.34 \times 10^{-5}$

Г

10	A	30	$\begin{array}{c c} 2NO_{2}(g) & \longrightarrow & 2NO_{3}(g) + O_{2}(g) \\ 2mol & & 1mol \\ (-6mol leftover) \\ [NO_{2}] = 6mol l^{-1} & [NO] = 2mol l^{-1} & [O_{2}] = 1mol l^{-1} \\ K = \frac{[NO]^{2} \times [O_{2}]}{[NO_{2}]^{2}} = \frac{[2]^{2} \times [1]}{[6]^{2}} = \frac{4 \times 1}{36} = 0.11 \end{array}$		
11	С	49	 ☑ A Weak acid: propanoic acid ☑ B Benzene ring has a carboxyl -COOH group (weak acid) and salt group (-COO⁻Na⁺) ☑ C Nitric acid HNO₃ is a strong acid and cannot be used in a buffer ☑ D Weak Alkali: ammonium hydroxide (ammonia solution) Salt: Ammonium chloride 		
12	D	50	$\frac{1}{1000} = 1 \times 10^{-1} \text{ mol} \ 1^{-1} = 1 \times 10^{-2} \text{ mol} \ 1^{-1} = 0.0025 \text{ mol}$ $\frac{1}{1000} \text{ of mol} = 1000000000000000000000000000000000000$		
13	D	92	 A suitable indicator as colour change (pH=3.1-4.4) takes place in vertical region B suitable indicator as colour change (pH=5.2-6.8) takes place in vertical region C suitable indicator as colour change (pH=6.0-7.6) takes place in vertical region C colour change of indicator (pH=8.3-10.0) takes place out with vertical region 		
14	В	74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
15	A	79	☑A Neutralisation is complete at 50cm ³ and temperature will start to fall ☑B Neutralisation is an exothermic reaction as temperature rises (initially) ☑C Neutralisation is an exothermic reaction as temperature rises (initially) ☑D Neutralisation is complete at 50cm ³ and temperature will stop rising		
16	A	56	 A Can only be calculated by Hess's Law calculation of other enthalpies B enthalpy of combustion can be calculated in a calorimeter C enthalpy of formation of CO₂ is same equation as enthalpy of combustion of C D enthalpy of combustion can be calculated in a calorimeter 		
17	A	36	Enthalpy of formation of HCI: $\frac{1}{2}H_{2(g)} + \frac{1}{2}CI_{2(g)} \longrightarrow HCI_{(g)}$ <u>Bond Breaking Steps</u> $\frac{1}{2}$ mol H-H $\frac{1}{2} \times 432$ kJ = 216kJ $\frac{1}{2}$ mol CI-CI $\frac{1}{2} \times 243$ kJ = 121.5kJ $+337.5$ kJ 428 kJ = -90.5kJ mol^{-1}		
18	С	73	 A Enthalpy of atomisation of I_{2(s)} is a step in the formation of Rubidium Iodide B Breaking I-I bond is a step in the formation of Rubidium Iodide C Iodine atoms are ionised into negative ions as iodine is a non-metal D Electron Affinity of Iodine atoms is a step in the formation of Rubidium Iodide. 		
19	С	81	$\begin{array}{ c c c c c c } \hline \bullet & 2^{nd} \text{ ionisation energy} & Cr^{*}(g) & \rightarrow & Cr^{2*}(g) + e^{-} & \Delta H = +1600 \text{ kJ} \\ \hline \bullet & 3^{rd} \text{ ionisation energy} & Cr^{2*}(g) & \rightarrow & Cr^{3*}(g) + e^{-} & \Delta H = +3000 \text{ kJ} \\ \hline \bullet + \bullet & Cr^{*}(g) & \rightarrow & Cr^{3*}(g) + 2e^{-} & \Delta H = +4600 \text{ kJ} \end{array} \right \begin{array}{c} \text{These figures} \\ \text{are from the old} \\ \text{data booklet} \end{array}$		
20	D	89	$\Delta S_{vapourisation} = \frac{\Delta H_{vapourisation}}{T_b} \therefore T_b = \frac{\Delta H_{vapourisation}}{\Delta S_{vapourisation}} = \frac{40600 \text{ J mol}^{-1}}{88 \text{ J K}^{-1} \text{ mol}^{-1}} = 461.3 \text{ K}$		
21	С	47	ΔH ΔS Condensation is an exothermic process as heat is given out as steam turns into water Condensation decreases the entropy (disorder) as the steam particles become more ordered as they get closer together into water.		

22	С	67	Value of G increases from 20 ·	to 50 ∴ ∆G= 50-20 = +30	≺J mol⁻¹
23	В	68	 ☑ A addition reactions require ☑ B elimination reaction: 2bro ☑ C oxidation involves an incre 	: C=C double bond mobutane becomes but-1-e ase in the oxygen : hydrog	ene and but-2-ene gen ratio
21		86	 D potassium hydroxide in et A This step is an initiation s B This step is a termination 	hanol causes elimination re tep as free radicals are ge step as free radicals join	eactions not substitution enerated. together.
24	U	00	■C This step is a termination ■D This step is a propagation ■A Primary belocangly and propagation	step as free radicals join step as free radicals are	together. on both sides of the arrow.
25	В	72	☑B Tertiary halogenalkanes re ☑C Primary halogenalkanes re ☑D Secondary halogenalkanes	eact by S_N2 mechanism (no act by S_N2 mechanism (no react by S_N2 mechanism (no	rming carbocation formed) carbocation formed) (no carbocation formed)
26	A	72	 ✓ A Carboxylic acids form dim ☑ B No hydrogen bonding in an ☑ C No hydrogen bonding in an ☑ D Alcohols have hydrogen bo 	iers which explains higher 1 aldehyde (only permanent dipo 1 ketone (only permanent dipole t 2 onding but do not form din	boiling point le to permanent dipole attractions) to permanent dipole attractions) ners
27	С	66	■A Insolubility in water is no ■B Low boiling points are not ☑C High solubility when hot a ■D High solubility when hot a	t essential for use in recry essential for use in recrys nd low solubility when cold nd low solubility when cold	vstallisation stallisation. is an essential property l is an essential property
28	D	78	EA Addition of HBr into prop EB Markovnikov's Rule: 1-bror EC Addition of HBr into prop 図D Markovnikov's Rule: 1-broi	ene produces 1-bromoprop nopropane is the minor pro ene produces 1-bromoprop nopropane is the major pro	pane and 2-bromopropane oduct ane and 2-bromopropane oduct
29	A	56	 ☑ A sp hybridisation is found i ☑ B sp² hybridisation is found ☑ C sp³ hybridisation is found ☑ D s²p hybridisation is a made 	n C≡C triple bonds in C≕C double bonds in C—C single bonds e up answer for a fourth a	nswer in the multiple choice
30	В	88	C=O double bond contain CO₂ contains 2x C=O bon ∴ CO₂ contains 2 sigma (s 1 sigma (σ) bond and ds σ) bonds and 2 pi (π) b	1 pi (π) bond bonds
			Р	Q	R
31	В	20	chlorobenzene Chlorobenzene is planar as chlorine atom is in same plane as the flat benzene ring Planar	chloroethene Chlorine atom is in same plane as rest of ethene molecule Planar	3-chloropropene -CH2Cl portion of molecule is in different plane to ethene portion of molecule Non-planar
32	A	69	Planar Planar Non-planar ☑A Aldehydes/ketones react with 2,4-dinitrophenylhydrazone ☑B Alcohols do not react with 2,4-dinitrophenylhydrazone ☑C Carboxylic acids do not react with 2,4-dinitrophenylhydrazone ☑D Ethers do not react with 2,4-dinitrophenylhydrazone		
33	В	92	 ☑ A C₃H₈O is the formula of e ☑ B C₃H₆O can be the formula ☑ C C₂H₄O is the formula of e ☑ D CH₂O is the formula of mathematical structure 	ither an alcohol or an ethe of an aldehyde or a keton thanal and is an aldehyde ethanal and is an aldehvde	e
34	D	82	 ☑ A Nitriles have high pK_a valu ☑ B Aldehydes have a neutral ☑ C Alcohols have a neutral pF ☑ D Amines have an alkaline pF 	ue and there is little dissoo pH 1 1	ciation.

35	В	68	benzene	+ CH3Cl AICI3	methylk	Denzene	CH₃ + HCl
36	В	50	⊠A This type of is ☑B Ring of carbons ☑C for geometric ☑D C=C double rea	omerism is called optical ison s will secure geometric isome isomerism, -CH3 groups are o quired for geometric isomeri	nerism or erism as v n opposit sm	r enantior vould a C= re sides o	ners =C double bond f the C==C bond
				Element	С	Н	
				%	82.7	17.3	
				No. of moles (divide % by gfm)	82.7	17.3	
27		20			12	1	
57	U				= 6.89	= 17.3	
				Mole ratio (divide through by smallest value)	6.89	17.3	
					0.89	0.89 - 2.51	
				Double and Round to Whole Number	2	5	
			☑A Wavenumber: I	Number of waves per centim	etre if m	easured i	n cm ⁻¹
20			🗷 B Wavelength: T	he distance of one complete	wave (e.g	. peak to	peak)
38	A	/4	EC Frequency: The	e number of waves per secon	d	•	
			ED Intensity: Amp	litude (height from centre)	of a wave	2	
			🗷 A Colorimetry: visi	ble wavelengths being absorbed	l by colour	ed solutio	n to determine conc.
20		02	B Mass Spectroscopy: Mass measured by the bending of charged particles in electric field				
39	D	02	EC Proton NMR: flipping of hydrogen nuclei in a strong magnetic field				
			D IR-spectroscopy:	absorbed IR radiation of particu	lar wavenu	mber vibra	tes particular bonds
			🗷 A Agonists produc	e the biological response of the	natural su	ubstrate	
10		01	B A receptor binds	s to the drug/natural substrate			
40	40 D	74	🗷 C Antagonists bind w	vith the binding site of the receptor	[,] but do not	· produce th	e biological response
		☑D Pharmacophore i	s the shape which fits the bind	ing site of	the recep	otor	

2012 Adv Higher Chemistry Marking Scheme			
Long Qu	Answer	Reasoning	
1a (i)	295.6	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{405 \times 10^{-9} \text{ m}}$ $= 295648.9 \text{ J mol}^{-1}$ $= 295.6 \text{ kJ mol}^{-1}$	
1a (ii)	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ¹⁰	Ga atoms have electronic configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ¹ Ga ³⁺ ions have electronic configuration : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ as electrons will be lost from 4p then 4s subshells first.	
1b	Photovoltaic effect	The photovoltaic effect is when a semiconductor produces a voltage when light is exposed to the semiconductor.	
1c	Positive Holes	Silicon doped with group three elements like boron, aluminium or indium have positive holes because group three elements have three outer electrons and cannot make a fourth bond with the silicon leading to a positive hole which conducts the charge across the semiconductor.	
2a (i)	+5	oxidation state of N in NO ₃ ⁻ : N + (3x-2) = -1 \therefore N - 6 = -1 \therefore N = +5	
2a(ii)	+3	oxidation state of N in HNO2: 1 + N + (2x-2) = 0 \therefore 1+ N - 4 = 0 \therefore N = +3	
2b	2HNO2 + 4H ⁺ + 4e ⁻ ↓ H2N2O2 + 2H2O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2c	dicyanidocuprate(I)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	
3а	The radius ratio of the ions	Also acceptable: The relative radii of the ions Relative ionic radii of the elements The relative size of the ions Size of ionic radii in relation to each other	
3b	Each sodium ion has 6 chloride ions surrounding it and vice versa		
3с	(potassium) fluoride	Ion Cs ⁺ Cl ⁻ K [*] F ⁻ Ionic Radii (pm) 174 181 138 133 Ratio of radii ∴ ratio = ¹⁷⁴ / ₁₈₁ ∴ ratio = ¹³⁸ / ₁₃₃ = 0.96 = 1.04	
3d(i)	Lattice enthalpy Hydration enthalpy	$Ca^{2*}(g) + 2Cl^{-}(g)$ Enthalpy of hydration of Ca^{2*} $Ca^{2*}(cl^{-})_{2}(s)$ Enthalpy of Solution $Ca^{2*}(cl^{-})_{2}(s)$ $Ca^{2*}(aq) + 2Cl^{-}(aq)$	

3d(ii)	Increase in disorder	$\Delta G^{\circ} = \Delta H - T\Delta S^{\circ}$ but $\Delta H = 0 \therefore \Delta G^{\circ} = 0 - T\Delta S^{\circ}$ $\therefore \Delta G^{\circ}$ will always be negative (feasible) if value of ΔS° is positive.				
		Reactions were there is a increase in disorder have a positive ΔS°				
4a	Trigonal planar	H B H H				
4b	Both electrons in dative covalent bond provided by oxygen	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
4c	(cyclic) ethers	Ethers contain the functional group: C-O-C				
5a 5b 5c	3.95g Answers from: Answers from:	Average volume of thiosulphate = $(15.20+15.30)/2$ = 15.25 cm ³ = 0.01525 litres no. of mol $S_2O_3^{2-}$ = volume x concentration = $0.01525 \times 0.102 = 1.56 \times 10^{-3}$ mol I_2 + $2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$ 1mol 2mol 7.80×10^{-4} mol 1.56×10^{-3} mol $2Cu^{2^+} + 4I^- \rightarrow 2CuI + I_2$ 2mol 1 mol 1.56×10^{-3} mol 7.80×10^{-4} mol Mass Cu^{2^+} in 25 cm ³ solution = no of moles x gfm = $1.56 \times 10^{-3} \times 63.5 = 0.0988g$ Mass of Cu^{2^+} in 1 litre solution = $0.0988g \times 1^{1000}/25 = 3.95g$ Use distilled/ deionised water. Rinsings. (Start with different samples from the key and) carry out replicates / duplicates. Cover beaker with watch glass when key is being dissolved Increase sample size for titration EDTA complexes with Cu (and Ni) Other interfering metal ions EDTA complexing with something else/impurities Former in FDTA complexing with something else/impurities				
60	Separation Funnel	Partition Co-efficient experiments are carried out in a separation funnel				
6b	C Accept 0.127 - 0.130/0.13	Mass of Propanedioic acid (g) $[X]_{hexane}$ $[X]_{water}$ $K=$ $[X]_{water}$ 0.31 0.031 0.24 0.129 0.44 0.038 0.30 0.127 0.61 0.048 0.37 0.130				
6c	Different temperature	Also acceptable: One of the solutions may be saturated System hadn't reached equilibrium (before separation)				
6d	One Answer from:	Ethanol and water are miscible or ethanol soluble in water or two layers won't be formed				

7a	0.575 mol l ⁻¹	$pH = \frac{1}{2}pK_{a} - \frac{1}{2}\log c$ $2.5 = \frac{1}{2} \times 4.76 - \frac{1}{2}\log c$ $2.5 = 2.38 - \frac{1}{2}\log c$ $\frac{1}{2}\log c = 2.38 - 2.5$ $\frac{1}{2}\log c = -0.12$ $\log c = -0.24$ $c = 10^{-0.24}$ $= 0.575$
7b	Colour change hard to see in dark vinegar	Balsamic vinegar is a dark brown liquid (as stated in the stem of the question) and it might mask the colour change at neutralisation.
7c	CH3COO ⁻ or C2H3O2 ⁻	$\begin{array}{cccc} HA(aq) & + & H_2O(l) & \longrightarrow & H_3O^+(aq) & + & A^-(aq) \\ acid & base & conjugate acid & conjugate base \\ CH_3COOH(aq) & + & H_2O(l) & \longrightarrow & H_3O^+(aq) & + & CH_3COO^-(aq) \end{array}$
8a	Temperature below 2000°C	The upper line of a pair is the one which is reversed:At temperatures below $2000^{\circ}C$ At temperatures above $2000^{\circ}C$ $TiO_2 \rightarrow Ti + O_2$ $Ti + O_2 \rightarrow TiO_2$ $2Mg + O_2 \rightarrow 2MgO$ $2MgO \rightarrow 2Mg + O_2$
8b	One answer from:	Gradient of line is - ΔS or 2C+O ₂ \rightarrow 2CO has increase in entropy or 1mole of gas makes two moles of gas or increase in disorder or ΔS is positive
8c	One answer from:	Boiling point of magnesium or Change of state or magnesium becomes a gas
9	1.45V	ΔG =-nFE° \therefore E° = - $\frac{\Delta G}{nF}$ = - $\frac{-279.8 \times 10^{3}}{2 \times 96500}$ = 1.45V
10a	Zero or O	Changing [A] does not alter the reaction rate i.e the gradient of the line \therefore A is zero order as rate is constant regardless of concentration of A
10b	First or 1	At [B] = 0.003 mol l ⁻¹ , time = 30s and at [B] = 0.0015 mol l ⁻¹ , time = 60s \therefore doubling [B] doubles the reaction rate \therefore first order reaction
10c	S ⁻¹	Rate = k × [A] ⁰ × [B] ¹ = k × [B] Rate = k [B] : k = $\frac{\text{Rate}}{[B]} = \frac{\text{mol } l^{-1} s^{-1}}{\text{mol } l^{-1}} = s^{-1}$
11a (i)	Hydrogen	Hydrides react with water to form hydroxide compounds and hydrogen gas
11a (ii)	Hydrogen chloride	$PCI_5 + H_2O \longrightarrow POCI_3 + 2HCI$
11b (i)	Acid Chlorides	Acids chloride have the structure:

11b(ii)	Diagram showing:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
11b(iii)	One answer from:	faster reactionmore vigorous reactionreacts more readilygreater yieldneeds no catalystproduces HCl which can be soldno equilibrium reachedlower temperatureHCl produced not H2O then no H2O to hydrolyse ester
12a	C8H14S2O2 (Elements in any order)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12b(ii)	The carbon atom where the tail joins the ring	Chiral carbon H H (4 different groups attached)
12b(ii)	Four different atoms/groups attached to it	C S—S ^H
13a	Answers from:	To prevent evaporation or reactants/products/chemicals escaping To reduce smell Idea of flammability of ethylbenzoate or ethanol
13b	(alkaline) hydrolysis Or hydrolysing	Ethyl benzoate is an ester hydrolysis of esters produces alcohols and carboxylic acids.
13c	Anti-bumping granules or few glass beads	Beads/granules prevent bumping of the chemicals in the refluxing process and this prevents chemicals jumping up reflux apparatus.
13d	Answers including:	Oily layer disappearsGoes clearNo more oily dropletsNo longer two layersLack of filmCloudy to colourless
13e	3.36g	$C_{6}H_{5}COOC_{2}H_{5} + H_{2}O \longrightarrow C_{6}H_{5}COOH + HOC_{2}H_{5}$ $1 \text{mol} \qquad 1 \text{mol}$ $150\text{g} \qquad 122\text{g}$ $5.64\text{g} \qquad 122\text{g} \times {}^{5.64}/_{150}$ $= 4.59 \text{ g}$ $73.2\% \text{ of } 4.59\text{g} = \frac{73.2}{100} \times 4.59\text{g} = 3.36\text{g}$
14a(i)	Electrophillic substitution	Nitronium ion formed by: $HNO_3 + H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$ nitronium ion NO_2^+ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
14a(ii)	C₀H₅NH₂ or Aniline or Aminobenzene or phenylamine	Organic bases contain the Amino -NH $_2$ group where the nitro-NO $_2$ group is converted into the amino -NH $_2$ group by the tin/conc HCl mixture.

